

Toronto Police Service PUBLIC SAFETY DATA PORTAL

KSI-Related Collisions in Toronto: A predictive model with an app

Huaye Zhan¹, Helia Mozaffari¹, Mattia Carganico¹, Jaekyeong Jang¹, Hsin-Tung Chen¹

¹ Artificial Intelligence - Software engineer technology, Centennial College

content

1. Introduction

2. Preprocessing: cleaning, selection...

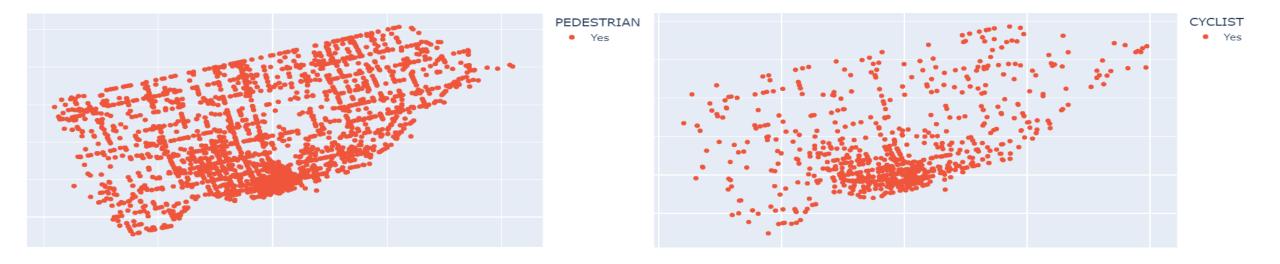
3. Method and Model

4. Result and Discussion

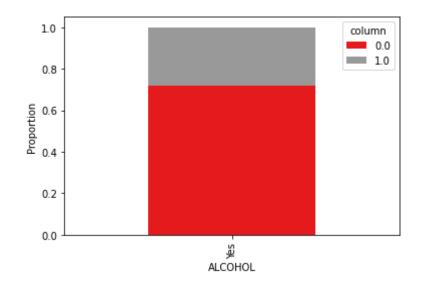
5. Model Deployment

6. Conclusion

REVISITING VISUALIZATION



Multicollinearity and nulls



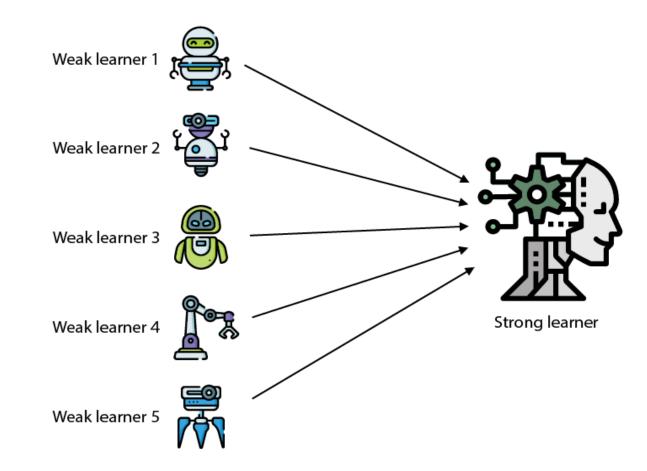
CYCLISTYF CYCACT CYCCOND PEDESTRIAN CYCLIST

	1.0		÷.	÷.			÷.		÷.		
	0.8			L							
Proportion	0.6			ł.							
Prop	0.4										
	0.2	. colu	imn 0.0 1.0								
ΤΥ	0.0	Ability Impaired, Alcohol	Ability Impaired, Alcohol Over .08	Ability Impaired, Drugs	Fatigue -	Had Been Drinking -	Inattentive -	Medical or Physical Disability -	Normal -	Other -	Unknown -
						DRIV	COND				

				 			_		
	,	Yes			Yes	Yes	Yes	Yes	
	,	Yes			Yes	Yes	Yes	Yes	
	,	Yes			Yes	Yes	Yes	Yes	
	,	Yes			Yes	Yes	Yes	Yes	
	,	Yes			Yes	Yes	Yes	Yes	
	,	Yes			Yes	Yes	Yes	Yes	
	,	Yes			Yes	Yes	Yes	Yes	
	,	Yes			Yes	Yes	Yes	Yes	
	,	Yes			Yes				
	,	Yes			Yes				
	,	Yes			Yes				
	,	Yes			Yes				
		Yes			Yes				

AUTOMOBILE MOTORCYCLE TRUCK TRSN_CITY_VEH EMERG_VEH PASSENGER SPEEDING AG_DRIV REDLIGHT ALCOHOL DISABILITY

Choosing a model



https://livebook.manning.com/book/grokking-machine-learning/chapter-12/15

ETL: Extract, transform, load

Snow	Dark, artifi	Slush	Non-Fatal	SMV Othe	Driver	20 to 24	None
Snow	Dark, artifi	Slush	Non-Fatal	SMV Othe	Other Prop	unknown	
Other	Dark, artifi	Wet	Non-Fatal	Pedestrian	Driver	30 to 34	None
Other	Dark, artifi	Wet	Non-Fatal	Pedestrian	Pedestrian	45 to 49	Major
Rain	Dark	Wet	Non-Fatal	Pedestrian	Driver	25 to 29	None
Rain	Dark	Wet	Non-Fatal	Pedestrian	Pedestrian	75 to 79	Major
Clear	Dark, artifi	Dry	Non-Fatal	Pedestrian	Driver	50 to 54	None
Clear	Dark, artifi	Dry	Non-Fatal	Pedestrian	Pedestrian	25 to 29	Major
Clear	Dark	Wet	Fatal	Approachi	Driver	50 to 54	Fatal
Clear	Dark	Wet	Fatal	Approachi	Vehicle Ov	unknown	
Clear	Dark	Wet	Fatal	Approachi	Driver	35 to 39	Major
Clear	Daylight	Dry	Non-Fatal	Angle	Driver	40 to 44	Minimal
Clear	Daylight	Dry	Non-Fatal	Angle	Driver	45 to 49	Major
Clear	Daylight	Dry	Non-Fatal	Angle	Other Prop	unknown	
Clear	Daylight	Dry	Non-Fatal	Angle	Other Prop	unknown	
Clear	Dark	Dry	Fatal	Pedestrian	Passenger	20 to 24	None
Clear	Dark	Dry	Fatal	Pedestrian	Passenger	20 to 24	None
Clear	Dark	Dry	Fatal	Pedestrian	Passenger	10 to 14	None
Clear	Dark	Dry	Fatal	Pedestrian	Vehicle Ov	unknown	
Clear	Dark	Dry	Fatal	Pedestrian	Driver	20 to 24	None
Clear	Dark	Dry	Fatal	Pedestrian	Pedestrian	10 to 14	Fatal
Clear	Daylight	Dry	Fatal	Pedestrian	Vehicle Ov	unknown	
Clear	Daylight	Dry	Fatal	Pedestrian	Driver	50 to 54	None
Clear	Daylight	Dry	Fatal	Pedestrian	Pedestrian	75 to 79	Fatal
Clear	Dark, artifi	Dry	Non-Fatal	Pedestrian	Vehicle Ov	unknown	
Clear	Dark, artifi	Dry	Non-Fatal	Pedestrian	Driver	55 to 59	None
Clear	Dark, artifi	Dry	Non-Fatal	Pedestrian	Pedestrian	50 to 54	Major
Clear	Daylight	Dry	Non-Fatal	Approachi	Driver	80 to 84	Minor
Clear	Daylight	Dry	Non-Fatal	Approachi	Driver	55 to 59	Major
Clear	Daylight	Wet	Fatal	SMV Othe	Passenger	15 to 19	Minimal
Clear	Daylight	Wet	Fatal	SMV Othe	Passenger	15 to 19	Minimal
Clear	Daylight	Wet	Fatal	SMV Othe	Passenger	15 to 19	Fatal
Clear	, ,	Wet	Fatal	SMV Othe	Vehicle Ov	unknown	
Clear	Daylight	Wet	Fatal	SMV Othe	Driver	15 to 19	Major
Clear	Daylight	Wet	Fatal	SMV Othe	Other Prop	unknown	

```
fatal_rows = (load_df['ACCLASS'] == 'Fatal') & (load_df['INJURY'] == 'Fatal')
df_fatal = load_df.loc[fatal_rows]
```

```
no_fatal_row = (load_df['ACCLASS'] == 'Non-Fatal Injury')
df_non_fatal = load_df.loc[no_fatal_row]
df_non_fatal = df_non_fatal.drop_duplicates(subset=['ACCNUM'])
```

```
df_final = pd.concat([df_fatal, df_non_fatal], ignore_index=True)
df_final.to_csv('allfilter_injury_data2.csv', index=False)
```

Handcrafted Ordinal Encoder

....

```
1: 'Small Vehicles',
   2: 'Trucks and Vans',
   3: 'Public Transit',
   4: 'Emergency and Unknown',
   5: 'Special Equipment',
   6: 'Off-Road',
   7: 'Bicycles and Mopeds',
   8: 'Motorcycles',
   9: 'Rickshaws',
   10: 'Others'
1.1.1
load df["VEHTYPE"] = load df["VEHTYPE"].fillna('Other')
classification = {
   'Automobile, Station Wagon': 1,
   'Bicycle': 7,
    'Motorcycle': 8,
    'Pick Up Truck': 1,
    'Passenger Van': 1,
    'Taxi': 1,
    'Moped': 7,
    'Delivery Van': 2,
    'Truck - Open': 2,
   'Truck - Closed (Blazer, etc)': 2,
    'Truck - Dump': 2,
    'Truck-Tractor': 2,
    'Truck (other)': 2,
    'Truck - Tank': 2,
    'Tow Truck': 2,
    'Truck - Car Carrier': 2,
    'Municipal Transit Bus (TTC)': 3,
    'Street Car': 3,
    'Bus (Other) (Go Bus, Gray Coa': 3,
    'Intercity Bus': 3,
    'School Bus': 3,
    'Other': 10,
    'Unknown': 4,
    'Police Vehicle': 4,
    'Fire Vehicle': 4,
    'Other Emergency Vehicle': 4,
    'Construction Equipment': 5,
    'Rickshaw': 9,
    'Ambulance': 4,
    'Off Road - 2 Wheels': 6,
    'Off Road - 4 Wheels': 6,
    'Off Road - Other': 6
```

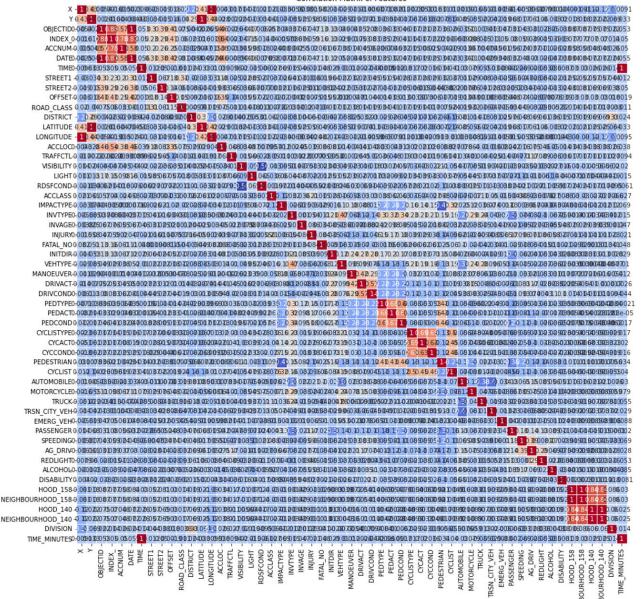
....

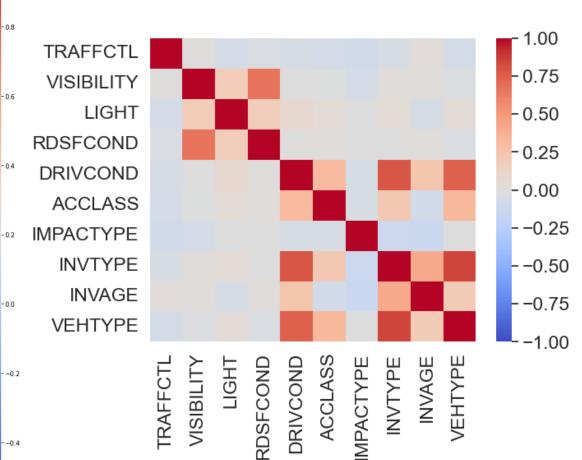
```
Dry(1)
Wet (2): Includes Wet and Spilled Liquid conditions.
Slushy/Other (3): Includes Slush and any other unspecified conditions.
Loose Surface (4): Includes Loose Snow, Packed Snow, and Loose Sand/Gravel.
Ice (5): Purely icy conditions.
1.1.1
load df["RDSFCOND"] = load df["RDSFCOND"].fillna('Other')
load df['RDSFCOND'].value counts()
road condition classification = {
    'Dry': 1,
                            # Category 1: Dry
    'Wet': 2,
                        # Category 2: Wet
    'Slush': 3,
                            # Category 3: Slushy
   'Loose Snow': 4, # Category 4: Loose Snow
   'Packed Snow': 4, # Category 4: Packed Snow
                            # Category 5: Ice
   'Ice': 5,
   'Loose Sand or Gravel': 4, # Category 4: Loose Sand/Gravel
    'Spilled liquid': 2, # Category 2: Wet (Spilled Liquid)
    'Other': 3
                            # Category 3: Slushy/Other
```

load df['RDSFCOND'] = load df['RDSFCOND'].map(road condition classification)

Correlation Analysis of Final Model Features

Correlation Matrix of Features

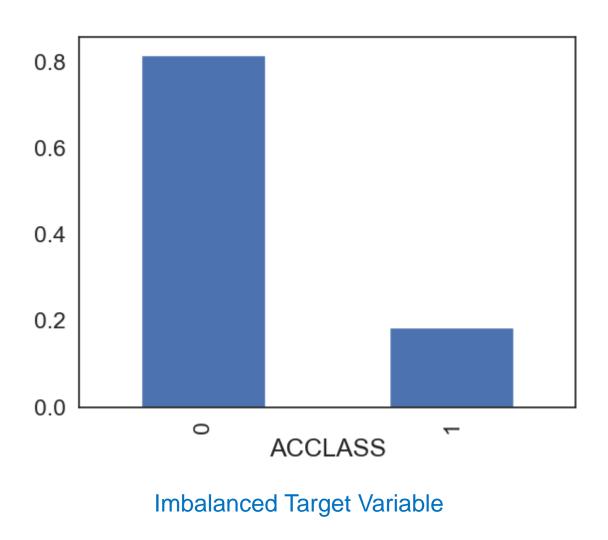




-

3 Imbalanced Data and Method

2000 2000 1500





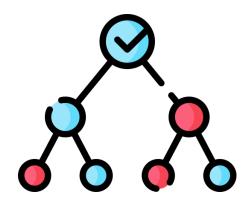
Class Distribution Before SMOTETomek

Oversamping: SMOTETomek

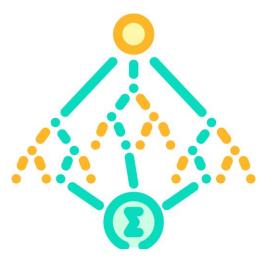
Class

3 Model Comparison

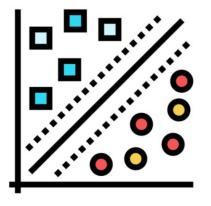
Logistic Regression



Decision Tree



Random Forest



XGBoost

SVM

3 Data Binning VS Dummy Variables

new_df = load_df[['TRAFFCTL', 'VISIBILITY', 'LIGHT', 'RDSFCOND', 'DRIVCOND', 'ACCLASS', 'IMPACTYPE', 'INVTYPE', 'INVAGE', 'VEHTYPE']]
print(new_df)

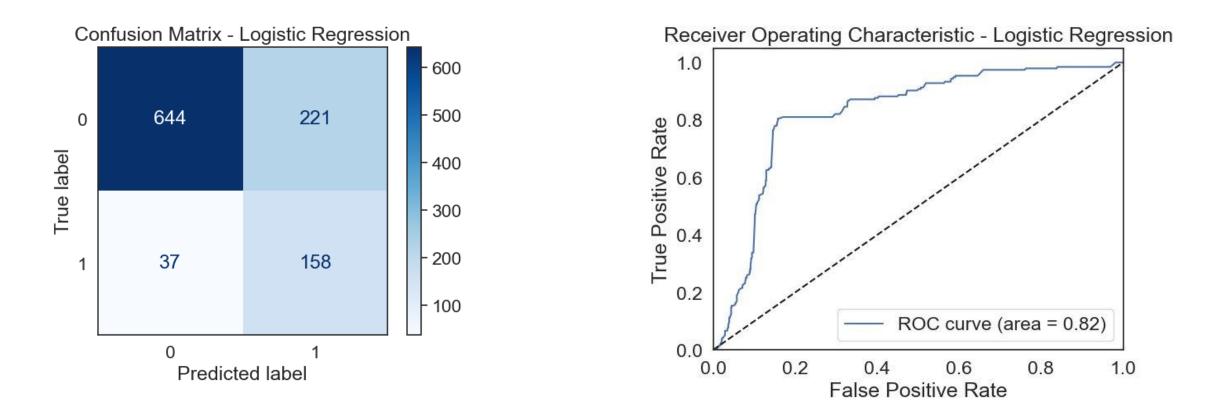
Ð	Θ
Ľ	

	TRAFFCTL	VISIBILITY	LIGHT	RDSFCOND	DRIVCOND	ACCLASS	IMPACTYPE	
0	1	1	3	2	2	1	2	
1	2	1	3	1	3	1	1	
2	2	1	1	1	3	1	1	
3	1	1	1	2	3	1	2	
4	1	1	3	1	3	1	1	
5294	1	2	2	2	1	0	2	
5295	2	1	1	1	1	0	1	
5296	2	1	2	1	2	0	2	
5297	2	2	2	2	1	0	1	
5298	1	2	3	2	1	0	1	

	INVTYPE	INVAGE	VEHTYPE
0	1	5	1
1	4	2	10
2	4	5	10
3	3	2	10
4	4	5	10
5294	1	4	1
5295	1	5	1
5296	1	5	1
5297	1	5	1
5298	1	5	1

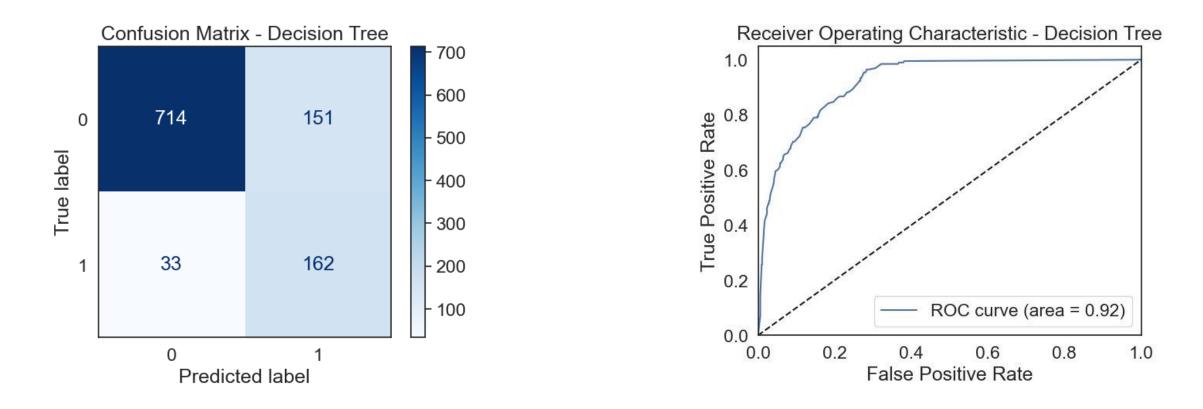
- For example, bin the 8 clarity values into just 3 distinct buckets
- Adding dummy variables for each categorical column can lead to wide data sets and increase model variance
- Data binning can solve this problem
- In general, we want data to be long rather than wide (many rows, few columns)

3 Logistic Regression: after Randomized Search



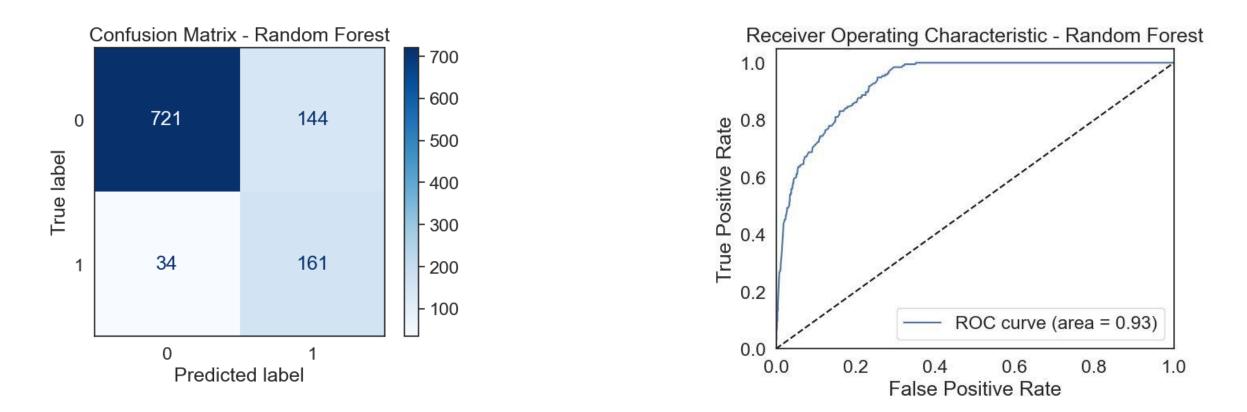
Model	Accuracy	Precision	Recall	F1-Score	AUC Score	Cross-validation Score	Best Parameters
Logistic Regression	0.7566	0.42	0.81	0.55	0.8246	0.795 (+/- 0.012)	{'C': 0.10778765841014329, 'penalty': 'l2'}
Decision Tree	0.8264	0.52	0.83	0.64	0.9203	0.869 (+/- 0.012)	{'max_depth': 17, 'min_samples_leaf': 7, 'min_samples_split': 8}
Random Forest	0.8255	0.52	0.85	0.64	0.9266	0.874 (+/- 0.012)	{'max_depth': 13, 'min_samples_leaf': 2, 'min_samples_split': 3, 'n_estimators': 63}
Support Vector Machine	0.8142	0.5	0.88	0.63	0.8975	0.879 (+/- 0.015)	{'C': 3.845401188473625, 'gamma': 0.09607143064099162}
XGBoost	0.8274	0.52	0.83	0.64	0.9236	0.875 (+/- 0.012)	{'learning_rate': 0.06396921323890797, 'max_depth': 9, 'n_estimators': 173}

3 Decision Tree: after Randomized Search



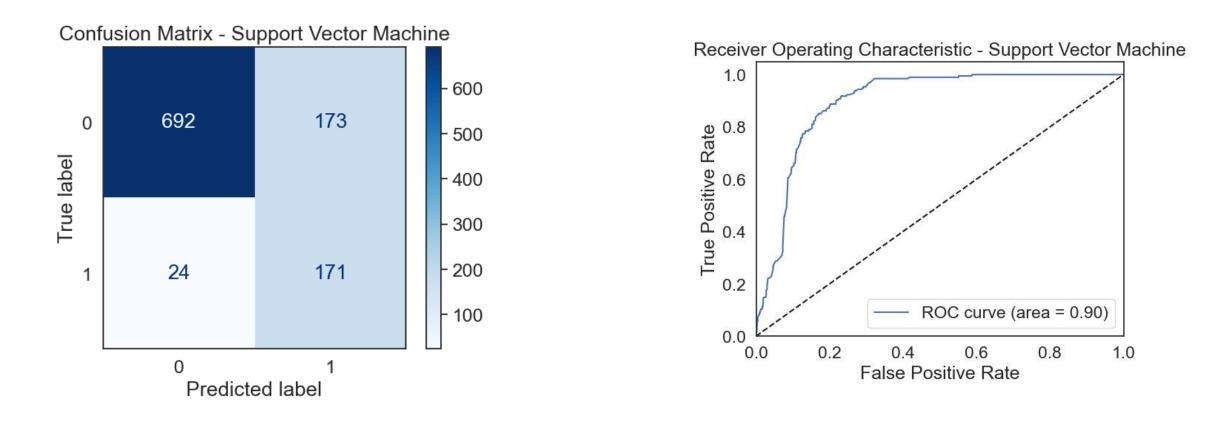
Model	Accuracy	Precision	Recall	F1-Score	AUC Score	Cross-validation Score	Best Parameters
Logistic Regression	0.7566	0.42	0.81	0.55	0.8246	0.795 (+/- 0.012)	{'C': 0.10778765841014329, 'penalty': 'l2'}
Decision Tree	0.8264	0.52	0.83	0.64	0.9203	0.869 (+/- 0.012)	{'max_depth': 17, 'min_samples_leaf': 7, 'min_samples_split': 8}
Random Forest	0.8255	0.52	0.85	0.64	0.9266	0.874 (+/- 0.012)	{'max_depth': 13, 'min_samples_leaf': 2, 'min_samples_split': 3, 'n_estimators': 63}
Support Vector Machine	0.8142	0.5	0.88	0.63	0.8975	0.879 (+/- 0.015)	{'C': 3.845401188473625, 'gamma': 0.09607143064099162}
XGBoost	0.8274	0.52	0.83	0.64	0.9236	0.875 (+/- 0.012)	{'learning_rate': 0.06396921323890797, 'max_depth': 9, 'n_estimators': 173}

3 Random Forest: after Randomized Search



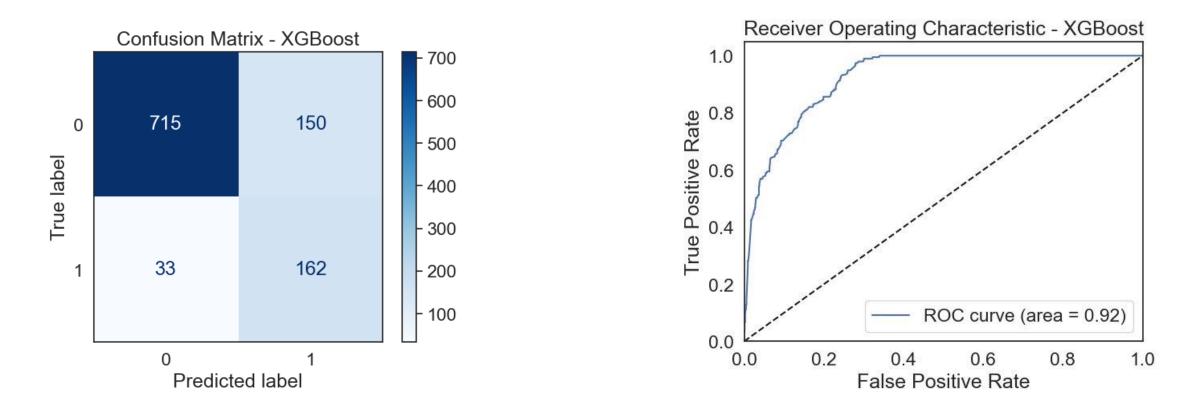
Model	Accuracy	Precision	Recall	F1-Score	AUC Score	Cross-validation Score	Best Parameters
Logistic Regression	0.7566	0.42	0.81	0.55	0.8246	0.795 (+/- 0.012)	{'C': 0.10778765841014329, 'penalty': 'l2'}
Decision Tree	0.8264	0.52	0.83	0.64	0.9203	0.869 (+/- 0.012)	{'max_depth': 17, 'min_samples_leaf': 7, 'min_samples_split': 8}
Random Forest	0.8255	0.52	0.85	0.64	0.9266	0.874 (+/- 0.012)	{'max_depth': 13, 'min_samples_leaf': 2, 'min_samples_split': 3, 'n_estimators': 63}
Support Vector Machine	0.8142	0.5	0.88	0.63	0.8975	0.879 (+/- 0.015)	{'C': 3.845401188473625, 'gamma': 0.09607143064099162}
XGBoost	0.8274	0.52	0.83	0.64	0.9236	0.875 (+/- 0.012)	{'learning_rate': 0.06396921323890797, 'max_depth': 9, 'n_estimators': 173}

3 SVM: after Randomized Search



Model	Accuracy Precision		Recall	F1-Score	AUC Score	Cross-validation Score	Best Parameters
Logistic Regression	0.7566	0.42	0.81	0.55	0.8246	0.795 (+/- 0.012)	{'C': 0.10778765841014329, 'penalty': 'l2'}
Decision Tree	0.8264	0.52	0.83	0.64	0.9203	0.869 (+/- 0.012)	{'max_depth': 17, 'min_samples_leaf': 7, 'min_samples_split': 8}
Random Forest	0.8255	0.52	0.85	0.64	0.9266	0.874 (+/- 0.012)	{'max_depth': 13, 'min_samples_leaf': 2, 'min_samples_split': 3, 'n_estimators': 63}
Support Vector Machine	0.8142	0.5	0.88	0.63	0.8975	0.879 (+/- 0.015)	{'C': 3.845401188473625, 'gamma': 0.09607143064099162}
XGBoost	0.8274	0.52	0.83	0.64	0.9236	0.875 (+/- 0.012)	{'learning_rate': 0.06396921323890797, 'max_depth': 9, 'n_estimators': 173}

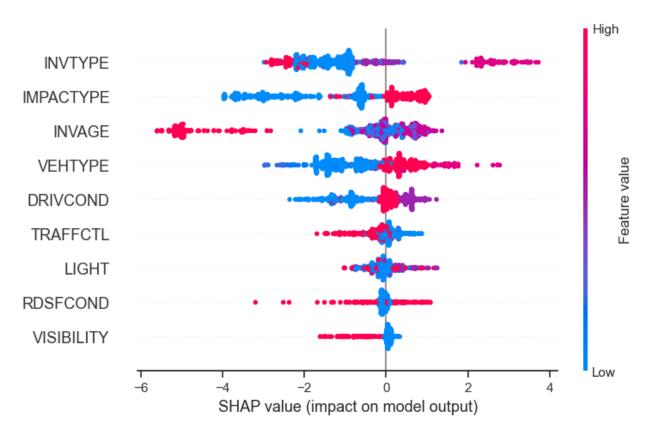
3 XGBoost: after Randomized Search



Model	Accuracy	Precision	Recall	F1-Score	AUC Score	Cross-validation Score	Best Parameters
Logistic Regression	0.7566	0.42	0.81	0.55	0.8246	0.795 (+/- 0.012)	{'C': 0.10778765841014329, 'penalty': 'l2'}
Decision Tree	0.8264	0.52	0.83	0.64	0.9203	0.869 (+/- 0.012)	{'max_depth': 17, 'min_samples_leaf': 7, 'min_samples_split': 8}
Random Forest	0.8255	0.52	0.85	0.64	0.9266	0.874 (+/- 0.012)	{'max_depth': 13, 'min_samples_leaf': 2, 'min_samples_split': 3, 'n_estimators': 63}
Support Vector Machine	0.8142	0.5	0.88	0.63	0.8975	0.879 (+/- 0.015)	{'C': 3.845401188473625, 'gamma': 0.09607143064099162}
XGBoost	0.8274	0.52	0.83	0.64	0.9236	0.875 (+/- 0.012)	{'learning_rate': 0.06396921323890797, 'max_depth': 9, 'n_estimators': 173}

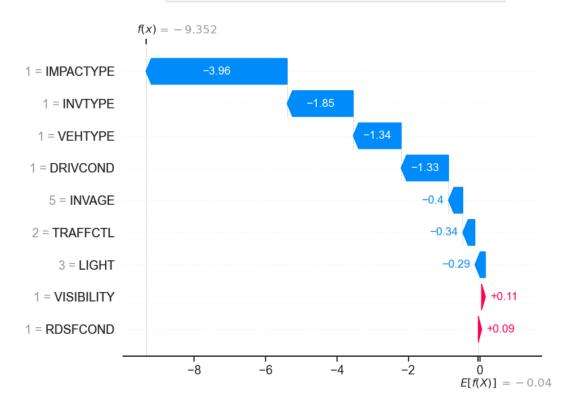
4 SHAP: Feature Importance Visualization

One reason we use GBMs(Gradient Boosted Machines): **Random Forests** work best when the goal is prediction performance for our result, but they are not ideal **if we want to understand how features impact the target.**

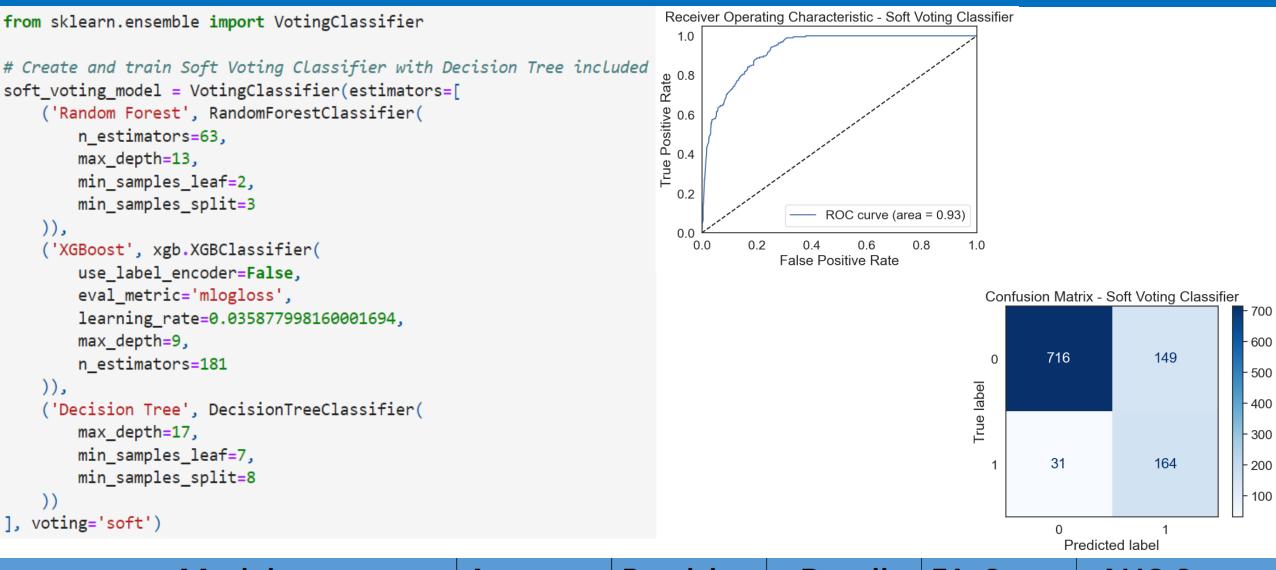


SHAP beeswarm plot

shap_values = explainer(X_test)
shap.plots.waterfall(shap_values[1])



4 Result: Ensemble with Soft Voting



Model	Accuracy	Precision	Recall	F1-Score	AUC Score
Ensemble with softing voting	0.8302	0.52	0.84	0.65	0.926

5 Model Deployment: Pipeline

pipeline			Ŧ							
▶										
preprocessor: Pipeline										
	<pre>SimpleImputer()</pre>									
voting: VotingClassifier										
Random Forest	XGBoost	Decision Tree								
 RandomForestClassifier 	• XGBClassifier	 DecisionTreeClassifier 								
	XGBClassifier(base_score=None, booster=Non e, callbacks=None, colsample bylevel=None, cols	<pre>DecisionTreeClassifier(max_depth=17, min_sa mples_leaf=7, min_samples_split=8)</pre>								
	<pre>ample_bynode=None,</pre>									

5 Model Deployment: Plotly and Dash

iii plotly

5 Model Deployment: Video Demo or Live Demo

Predict fatality in incidents

Traffic Control Type:	
No Control	\times -
Vehicle Type:	
Small Vehicles	\times -
Driver Condition:	
Normal	\times -
Involved Person Age Group:	
Infants and Young Children (0 to 9)	\times -
Visibility:	
Clear	\times -
Light Condition:	
Artificial Light	\times -
Road Surface Condition:	
Wet	\times -
Involved Person Type:	
Pedestrians	\times -
Impact Type:	
Vehicle-to-Vehicle Collisions	× •
Submit	

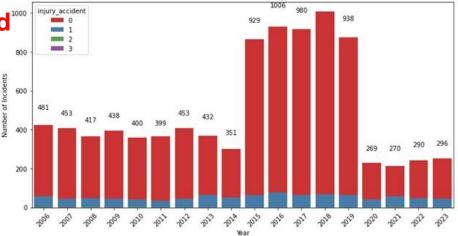
The probability of a fatality in this incident is 0.4

6 Conclusion: limitation and Improvement

- Transitioning from person-based data to incident-based data
- ACCNUM fill Null value

00	00	•	f		7					Ŭ	rouped_without	_
.62	33 V A	: (× ~ B	_ <i>fx</i> ∽] _ 483 ⊂ C	38602.930 D	/ <u>E</u>	F	G				Function to g of generate_un # Start wit	i iqu :h a
00	X -	Υ <u></u> +057230		INDEX_		DATE		STRE			random_accr # Append '2 unique accr	2024
09	619568.5			81465376		2019/12/23				- 1	while unique # Reger	ıe_a
10	619568.5	4835212	16209	81465377	7	2019/12/23	1415	ROY			random_	_acc
11	619568.5	4835212	16210	81465378		2019/12/23	1415	ROY/			unique_ return unic	
(ady	> 4930 oʻ 18!		d_Seriously → : × ✓			<u> </u>	New	i	ncid	ent l	based	
-			A .	<u>J~</u>	С	D		E	F	G	-53.5	800 -
				TE .	injury_accide 🝷	NUM_PEOPLE_	INVOLVE TIM	E		ROAD_C		600 -
	9	9881	982207 20	07/07/18 08:	1		14	1607	Clear	Major Ar	ber of I	
			002145902 20		0		15		Clear	Major Ar		400 -
		9883		08/05/13 08:	2		16		Clear	Major Ar		
		9884 4	002717713 20	14/08/17 08:	0		18 18		Clear Clear	Major Ar Major Ar		200 -
		9886		12/07/20 08:	0		10		Clear	Minor A		
												0

Original – person based



• Setting the Fatal Criteria: ACCLASS & INJURY => ACCLASS

Thank you!